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Numerical Simulation of Flows of Non-Newtonian Fluids
in the Stenotic and Bifurcated Tubes
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Steady flows of Newtonian and non-Newtonian fluids in the stenotic and bifurcated tubes are

numerically simulated. Four rheologically different fluids such as water, aqueous sugar solution,

aqueous Carbopol solution and blood are selected for the numerical simulation and the

modified power-law model is used for the numerical simulation of non-Newtonian fluids in the

stenotic and bifurcated tubes. Apparent viscosity of a non-Newtonian fluid in the modified

power-law model is expressed as a function of the shear rate. Flows in the circular tube with

sudden contraction-sudden expansion and gradual contraction-gradual expansion are studied

numerically. Analyses in the stenotic tubes are concentrated on the effects of rheological

properties, the stenotic geometry and Reynolds number. Flow characteristics of Carbopol

solution in the stenotic tubes are compared with those of blood. Effects of the bifurcation

geometry on the flow behaviors of Newtonian and non-Newtonian fluids are numerically

investigated. Numerical analyses are focused on the flow patterns in the branch tubes of which

angles are 30°, 60° and 90° and on the diameter ratios for Newtonian and non-Newtonian fluids.

Variations of the axial velocity and pressure drop along the bifurcated tubes for various flow

parameters are presented for Newtonian and non-Newtonian fluids.

Key Words: Non-Newtonian Fluids, Modified Power-Law Model, Stenotic Tubes, Bifurcated

Tubes. Numerical Flow Analysis
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Nomenclature------------·---

Db! : Diameter of first branch tube( m)

D b2 : Diameter of second branch tube( mj

Do : Diameter of circular tube in the upst-

ream(m)

L : Length of stenotic section(m)

m : Consistency of power-law model/Pa-s")

n : Power-law index

P : Static pressure( Pal

Po : Static pressure at the inlet( Pal

R : Radius of stenotic section(m)

Ro : Radius of circular tube(m)

r : Radial direction

: Height of stenosis( m)

u : Axial velocityt m/s)

u, : Velocity vector
-----------------------

* Dept. of Mech. Eng. & Design, Hank uk Aviation
University

** Dept. of Mech. Eng., Soong Sil University

U, : Average velocity in the upstreamtrrr/s)

I' : Radial velocitytrri/s)

z : Axial direction

Greek Letters

i : Shear rater s ')
Yo : Cut-off shear raters ')

/-le : Apparent viscosityt Pa-s)

/-lo : Zero shear rate viscosityt Pa-s)

() : Bifurcation angle

(J : Densitytkg/rn")

t., : Shear stress tensor

1. Introduction

Flow phenomena in the stenotic and bifurcated

tubes are frequently encountered in the engineer­

ing piping systems and biomedical applications.

Many experimental investigations and numerical

works for flows of Newtonian fluids in the
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2. Governing Equations

ratio and the power-law index of non-Newtonian

fluids are investigated.

The following governing equations are used to

obtain the flow characteristics of non-Newtonian

fluids.

(5)

(I)

(2)

(3)

(4)

t r m r "

U,j,j=o

PUjUf.j= - jJ,i + rU.j

{
mYo"-I, Y< Yo

/Le = . n -I . > .
my ,y - yo

The local apparent viscosity of a non­

Newtonian fluid can be determined from the

power-law model, once the local shear rate is

calculated (Chang et. al., 1993; Roh et. al.,
1993).

The power-law model describes the rheological

behavior of a non-Newtonian fluid quite well for

the wide range of shear rates. However, the model

predicts the apparent viscosity too high for the

range of low shear rate. Therefore, it is necessary

to modify the power-law model such a way that

the apparent viscosity remains constant in very

low range of the shear rate. The following for­

mula is used to calculate the apparent viscosity of

the power-law model.

where m and n are constants representing the

rheological properties of a non-Newtonian fluid.

The shear rate( y) is defined as

Equations (I) and (2) are continuity and

momentum equations for 3-dimensional, steady,

incompressible flows, respectively.

Among various constitutive equations the

power-law model which is suitable and conve­

nient for studying flow characteristics of non­

Newtonian fluids is employed in the current study

(Park and Lee, 1992; Suh and Yoo, 1993).

where yo is the cut-off shear rate defined for the

modified power-law model.

Equation (3) is called the modified power-law

stenotic and bifurcated tubes are reported in the

literature. Only a few studies for the same geome­

try mentioned above are reported in the publica­

tions for non- Newtonian fluids (Banerjee, 1992;

Cho and Kensey, 1991; Milnor, 1989; Morales

and Campo, 1993; Nicols and O'Rourke, 1990;

Yoo, 1993).

Aqueous polymer solutions are used as substi­

tutes for human blood in the experimental studies

due to complexity of blood for the experimental

application. Polymer solutions behave quite dif­

ferently from Newtonian fluids in tube flows

showing rheological complexity. Proper con­

stitutive equations for non-Newtonian fluids are

required to present the experimental results and to

solve the governing equations. Flow characteris­

tics of non-Newtonian fluids in the odd geome­

tries such as sudden contraction-sudden expan­

sion, gradual contraction-gradual expansion, and

bifurcation of tubes should be well investigated to

understand the physical phenomena obtained in

experimental results.

Flow phenomena in the bifurcated tubes are of

significance for practical piping systems and

biomedical applications (Lee and Goo, 1993).

Due to complex geometry branch flow analyses of

Newtonian and non-Newtonian fluids are relied

on the numerical methods to predict general flow

characteristics, and then experimental data are

supplemented to verify the numerical analysis for

the specified geometry. Most offlow studies in the

bifurcation tubes are focused on the effects of the

flow rate ratio and Reynolds number on the

velocity distribution, pressure variation and wall

shear stress for the bifurcation angle of 90° (Choi

and Yoo, 1992; Khodadadi et. al., 1986; Lieps­

ch et. al. , 1982; Yung et. al., 1990). Only a few

works are reported for the other bifurcated angles

and rounding effects of the bifurcated region.

In this study numerical analyses are focused on

flow patterns in the stenotic and bifurcated tubes

for Newtonian and non-Newtonian fluids. Geom­

etries of sudden contraction-sudden expansion

and gradual contraction-gradual expansion are

used for the stenotic section. Branch flows for the

bifurcation models with branch angles of 30°, 60

0, and 90° are analysed. Effects of the diameter
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model when Eq. (5) is used for calculation of the

apparent viscosity of a non-Newtonian fluid.

Substituting Eq. (3) into Eq. (2), the momentum

equation for a non-Newtonian fluid can be re­

presented as follows:

(JUJU,,; = - P.'+11,,( 1Ii,j+ u.I.,t (6)

3. Rheological Properties of Fluids

Many experimental studies concerned with sub­

stitutional fluids for human blood have been

reported in the literature. Some fluids such as

aqueous sugar solution (33w%) and aqueous

Carbopol 934 solution (I.Ow%) are chosen as the

substitutive fluids for blood. The apparent viscos­

ities of selected fluids are depicted in Fig. I.

Water and aqueous sugar solution are a typical

Newtonian fluid, but the aqueous Carbopol solu­

tion is known as a typical purely viscous non­

Newtonian f1uid and blood as a slightly viscoelas­

tic non-Newtonian f1uid with yield stress.

The rheological characters of blood and aque­

ous Carbopol solution are represented by the

power-law model in Fig. I (Banerjee, 1992). Solid

line and dotted line in Fig. I depict the

rheological characters of blood and Carbopol

solution, respectively. In the lower range of shear

rate the apparent viscosity of the sugar sol ution is

quite different from that of blood, but the appar­

ent viscosity of Carbopol solution is very similar

to that of blood. However, the apparent viscosity

of both Carbopol solution and sugar solution in

the high rate of shear are quite similar to that of

blood, especially around the shear rate order of

102 . The apparent viscosity of blood changes

more significantly than other fluids as the shear

rate increases.

Aqueous Carbopol solution shows more simi­

lar rheological character to blood than aqueous

sugar solution for wide range of shear rate.

Parameters for the rheological character of four

f1uids are presented in Table I, where m and n are

consistency and power-law index of the modified

power-law model, respectively.

4. Numerical Analyses

For numerical simulation of steady, two­

dimensional, incompressible flows in the stenotic

tubes, the governing equations are converted into

non-linear algebraic equations by the Galerkin

method, and then the equations are linearized by

the fixed point iteration method or the quasi­

Newton method and finally the resulting equa­

tions are solved by using the Gaussian elimina­

tion method. The FIDAP code prepared by FDI
(Fluid Dynamic International) is used to solve

the flows in the stenotic tubes (Chang et. al.,

1993).

The finite vol ume predictions in bifurcated

tubes were obtained by using a 35 x lOx 10 grid,

body-fitted coordinate system and hybrid differen­

cing scheme. The SIMPLE-C (Semi-Implicit

Method for Pressure Linked Equations­

Consistency) is applied to pressure and velocity

corrections. The STON E method is used to

10" 10° 10'
Shear rate. l(s')

Table 1 Properties of four different fluids (Cho et. al.,

1985; Pak et. al., 1990)

FlUidS' pr~;;t;~(-k:-::)fn(~:':)I'~·~o;~a.s~

Aoueous I Ow% I
1004 : 0023 0.80 0.037

carbopol solution I .

_~=~~o~d--=~0~~_1~~~~-'·0~~t~·056

~:}Blood (Bane!jee[l992]).•
10.,..,.------------------.

b
'Uj

.~ 10.3 --'----~ -< ---_ ••_-- .. ---_.-

---: Blood
~ : Carbopol l.Ow%
~ -. - : Sugar
_ . - : Water

...: 10'( +-...,.....,--rr~~,....,-rrr"'-,-".,CTT"r_.,.....,.-TTTrrrr--rJ

10"

Fig. 1 Apparent viscosity versus shear rate for
rheologically different fluids
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5. Flow in the Stenotic Tubes

Geometric configuration of a stenotic tube is

shown in Fig. 2. Dotted lines in the figure depict

the sudden contraction-sudden expansion shape

and solid line shows the cosine curved shape of

Eq. (7).

~~~~--
~

5.1 Newtonian and non-Newtonian fluids in
the stenotic tubes

For Reynolds number of 50 and fully devel­

oped flow from the inlet section, streamlines in

the circular tube with stenotic section are shown

in Fig. 3 for rheologically different fluids. The

reattachment length of water in the downstream

side of the stenotic section is the longest among

fluids, while aqueous sugar solution, aqueous

Carbopol solution and blood show shorter reatta­

chment lengths in order. Non-Newtonian fluids

such as blood and aqueous Carbopol solution

show shorter reattachment length than a

Newtonian fluid.

Variations of velocity and pressure along the

centerl ine are presented for the fully developed

flow and He = 50 in Figs. 4 and 5. respectively.

The results are presented in terms of dimension­

less parameters such as z/ Do, Il/ U« and (p- Po)/

0.5pUr;. where It and p are the centerline velocity

and pressure at z from the inlet, respectively. The

average velocity U« and inlet pressure Po are used

for the reference quantities.

In the upstream of the stenosis the centerline

velocities of blood and aqueous Carbopol solu­

tion are smaller than those of water and sugar

(c) Carbopol solution

For Numerical computation of flows in the

stenotic tube, the height and length of the stenosis

are set to be I = Ro/2 and L=2Rn.

(b) Sugar solution

(a) Water

(d) Blood

Fig. 3 Streamline contours in the stenotic tube at Re
=50

(7)I r . 7f( }21 1+cos (Ull

L are radius of circular tube,

and length of stenotic section

where Ro• I, and

height of stenosis

res pecti vely.

R( {)=Ho

~UtG_i_j(:_c:__~~~ __': ~ _
Fig. 2 Geometric configuration of a stenotic section

obtain the iterative solutions of the finite volume

discretization equations. In the computer code the

pressure boundary condition which specifies P=
a and Oil,!ax =0 is applied for the outlet bound­

ary condition. The constitutive equation, Eq. (5),

is used to calculate the apparent viscosity of

non-Newtonian fluids. In the user subroutine of

Fortran program the calculation of Eq. (5) is

directly connected to the solver. In this manner,

once the local shear rate is calculated the appar­

ent viscosity of non-Newtonian fluids can be

determined III the numerical analysis. The

FLOW3D release 3.2.1 code developed by

AEA(Atomic Energy Authority) is used to simu­

late the branch flows of non-Newtonian fluids.

The code consists of three modules, such as

Pre-processor (SOPHIA), Solver (FLOW3D) and

Post-processor (JASPER)(Roh et. aI., 1993).

User's subroutine for calculation of apparent

viscosity IS programmed to connect with

FLOW3D codes. The relative error to velocity in

convergence criteria is I X 10- 6
.

CONVEX CI20 and SUN SPARCstation IPC

are used for numerical simulation, and the results

are down-loaded to a SUN SPARCstation IPC

workstation.



Numerical Simulation of Flows of Non-Newtonian Fluids in the Stenotic and Bifurcated Tubes 227

Fig. 5 Pressure drop along the axis In the stenotic
tube at Re- c 50
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Fig. 6 Variation of the centerline velocity In the
stenotic tube at Re~,400

rheological characteristics of a fluid play signifi­

cant roles in the stenotic section. The centerline

velocity decreases rapidly passing through the

stenosis; blood and Carbopol solution resume

their fully developed values shortly in the down­

stream side, while water shows the longest dis­

tance to reach its fully developed value. Far

downstream side from the stenosis all fluids

resume their fully developed patterns just as those

in the upstream side.

Pressure drops of blood and Carbopol solution

along the axis are much larger than those of water

and sugar solution in the upstream, at the stenosis

and in the downstream side. It is apparent that the

viscosity plays the major role on the pressure

drop for a Newtonian fluid and the apparent

viscosity for non-Newtonian fluids. Pressure drop

of blood along the axis in the upstream and

downstream sides of the stenosis art: larger than

that of Carbopol solution. The larger pressure

drop of non-Newtonian fluids in the stenotic

section is related to high value of the apparent

viscosity gradient of non-Newtonian fluids in the

flow field.

For Re =400 and fully developed flow from

the inlet section, the centerline velocity and pres­

sure drop along the axis are shown in Fig. 6 and

Fig. 7, respectively. Blood and Carbopol solution

resume their respective fully developed velocity

profiles much faster than water and sugar solu­

tion. It is attributed to the fact that the rheological

characters of fluids are quite different in the flow

field. The apparent viscosities of blood and

(j 8

(;

velocity in the

II
z iD»

----~---------,

;. ---- : Blood I
: .. : Carbopol I

I : Sugar
. - : Water

,,
, : Blood

: CarbOIXJ!
: Sugar

- . - -': Waler

2

Stenosis
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21Do

Variation of the centerline
stenotic tube at Re = 50

7

2

Fig. 4

0
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-400

-SOD
(J

solution. This is mainly due to the fact that the

velocity profile of a non-Newtonian fluid in the

fully developed flow is flatter in the central region

than that of a Newtonian fluid. Passing through

the stenotic section the velocity of a fluid changes

rapidly. Centerline velocities of water and sugar

solution are the same in the upstream side of the

stenosis. However, the velocity of sugar solution

in the stenotic section is quite different from that

of water, showing higher velocity for sugar solu­

tion than for water. Four different fluids exhibit

quite different velocity patterns in the stenotic

section and downstream side of the stenosis.

Aqueous Carbopol solution shows the highest

centerline velocity in the stenotic section, while

water shows the lowest velocity.

It is clear that the apparent viscosity and
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mum and finally, decreases linearly in the far

downstream. Pressure drop of Carbopol solution

along the axis is much higher than that of blood

at Re ~~400, which is contrary to the results

obtained at Re = 50. The higher pressure drop of

Carbopol solution at Re =400 is caused by high

value of the apparent viscosity in the flow field.

The apparent viscosity of Carbopol solution is

higher than that of blood in the high range of the

shear rate as shown in Fig. I.

Streamlines along the stenotic tube at Re =400
is shown in Fig. 8. The recirculating zone of

Carbopol sol ution is smaller than that of blood,

representing the shorter reattachment length of

Carbopol solution. By comparison of Figs. 3 and

8, it can be shown that the recirculating zone and

the reattachment length increase as Reynolds

number increases.

5.2 Blood flow in the stenotic tubes
Rheological property of blood is represented by

the modified power-law model and effects of the

stenotic shapes and Reynolds numbers on the

blood flow in the stenotic tubes are numerically

analysed. Centerline velocity and pressure drop

along the axis for blood are shown in Figs. 9 and

10, respectively. S.C.-S.E. and G.C.-G.E. in the

figures depict the sudden contraction-sudden

expansion and grad ual contraction-gradual

expansion, respectively.

For the same Reynolds number the centerline

velocity in the S.C.-S.E. tube is much higher than

4030

--------.

,
-, ,

,

,
,

: Blood
: Carbopol
: Sugar
: Water

10

Stenosis

0

-30

'$
= -GOIf)

0
<,

iO.,
c. -90

-120

0 20
21Do

Fig. 7 Pressure drop along the axis in the stenotic
tube at Re=400

Carbopol solution for the range of the shear rate

experienced in the flow field are much higher than

those of water and sugar solution and the power­

law index of those fluids are much lower than a

Newtonian fluid.

Pressure drops across the stenotic section at Re
=400 for non-Newtonian fluids are quite differ­

ent from those at Re = 50 showing very strong

Reynolds number dependency. Dimensionless

pressure drop of fluids decreases as Reynolds

number increases. An abrupt pressure drop due to

the stenotic section is shown in Fig. 7.

The static pressure decreases to the lowest local

value just after the stenotic section, recovers grad­

ually from the minimum, reaches its local maxi-

sections

8G

,,
,, ,

"~>"--

7

G

5

~'1
::'l

.1

2

0 2 '1
21Do

Fig. 9 Variation of the centerline velocity of blood
in the circular tubes with different stenotic

(a) Water

(b) Sugar solution

(c) Carbopol solution

(d) Blood

Fig. 8 Streamline contours in the stenotic tube at Re
=400
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(d) Re=400

6. Flow in the Bifurcation Geometry

for blood are presented in Fig. II. For the same

Reynolds number the recirculating zone and the

reattachment length in the S.C.-S.E. tube are

much larger than those in the G.C.-G.E. tube. The

geometric configuration of a stenotic tube should

be carefully examined for practical application of

the blood flow.

In the present numerical study rheological

characters of blood and Carbopol solution are

modeled by the modified power-law model to

account for the apparent viscosity in the lower

range of shear rate by introducing the cut-off

shear rate. It is observed that the velocity distribu­

tion and pressure drop along the axis are not

much atTected by the value of the cut-off shear

rate in the low range of shear rate. Therefore, the

cut-off shear rate is selected to y,,=O.1 for numer­

ical calculation.

Schematic configuration of a bifurcated tube is

shown in Fig. 12. Main tube Do in the upstream

is bifurcated into two branches symmetrically,

diameter Db) for one branch and Db2 for the

other. This bifurcated configurations may be

found in the industrial piping systems, femoral

artery and abdominal aorta of the human body.

8

=

G4
'zIDo

"=," S.C.-SR
-- : Re=50
- - - - - : Re=400

G.C.-G.E.
-. - : Re=50

, - • ::-,' . - : Re=400

-700 '--__+---.JI_---,-__----.__----.J

o

0r==;:::::::-~;:;:===~~;:::::;::::::::::::=1

-100

-200

N~ -300
ioo
~ -400,
'" -500

(a) Re=50

(b) Re=400

Fig. 10 Pressure drop of blood along the axis in the
circular tubes with different stenotic sections

-GOO Stenosis

(c) Rc=50

~ ..

Fig. 11 Streamline contours of blood in the circular
tubes with different stenotic sections

that in the G.C.-G.E. tube. This phenomenon

occurs for all Reynolds numbers. Reattachment

length of the blood flow increases as Reynolds

number increases. Longer reattachment length for

high Reynolds number is analogous to the longer

hydrodynamic entrance length for high Reynolds

number of non-Newtonian fluids. Reattachment

length in the S.C.-S.E. tube is longer than that in

the G.C.-G.E. tube. regardless of Reynolds num­

ber.
Obviously, pressure drop in the S.C.-S.E. tube

is larger than that in the G.C.-G.E. tube. The

orders of magnitude of the pressure drops in the

S.C.-S.E. and G.C.-G.E. tubes are quite different.

Streamline contours around the stenotic sections

6.1 Effect of the bifurcation angle
For Reynolds number of 400 and diameter

ratio D b 1/ Ds> 1.0. the centerline velocity and

pressure variation along the axis of a Newtonian

fluid are shown in Figs. 13 and 14, respectively.

outer wall

Fig. 12 Schematic diagram of a bifurcation model
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2.0 ,-----..~----------~

entrance of tube prevails are all identical regard­

less of the bifurcation angles. However, the center­

line velocity decreases sharply in the bifurcated

region depending upon the bifurcation angle. A

steeper decrease of the velocity occurs for the

highest bifurcation angle. The larger the bifurca­

tion angle. the steeper the variation of velocity in

the bifurcation region. Recovering phenomenon

of velocity from the lowest value in the bifurcated

region is similar for all bifurcation angles. Veloc­

ities in the far downstream side of the daughter

branch resume their fully developed pattern.

The centerline pressures in the main tube and

downstream side of the branch show the fully

developed patterns. However. the pressure in the

bifurcated region is strongly affected by the bifur­

cation angle. showing very irregular flow phe­

nomenon due to abrupt change in flow direction

and area.

Figure 15 shows the axial velocity profile in the

daughter branch with the bifurcated angle of 30°.

Velocity profile at a given section is skewed

inward due to the centrifugal force in the curved

flow resulting low velocity in the central region.

Back flow is seen in the outer wall of the daughter

branch where a recirculating zone is formed by

the flow separation. Also, not shown in the figure,

v-component of the velocity vector appears in the

bifurcated region. The v-component does not

appear in the main tube and far downstream of

the branch. The complicated pressure variation in

the bifurcated region is associated with the

skewed velocity profile and separation bubble in

the flow.

0=30'
0=60'
0=90'

2520

0=30'
0=60'

-. -: 0=90'

10

2.0

3.0 r;-------------

,\ A
\',,' it2.5 \

" - ,v>:
<,

1.5

0.5

B.I'.
0.0 --I--~-~--~-~---,-J

o 5

~ 1.0

0.5

Abbreviation B.P. in the figures depicts the bifur­

cation point. Dimensionless parameters are

defined based on the quantities of main tube, such

as z/Do, u/ U« and LJp/(0.5pUg). Diameter Do
and average velocity Uo in the main tube are used

for the reference quantities. Axial location along

the centerline is denoted by z and the pressure

difference between inlet value and local value by

LJp.
Centerline velocities of fluids in the upstream

side where the fully developed flow from the

15
z/Do

Fig. 13 Effect of the bifurcated angle on the center­
line velocity for a Newtonian fluid

Fig. 15 Axial velocity profile in the daughter branch
with the bifurcation angle of 30°

6.2 Effect of the power-law index of a non­
Newtonian fluid

Effects of the power-law index 1'1 on the center­

line velocity and pressure for the bifurcated angle

of 30° are presented in Figs. 16 and 17, respective­

ly. For the given value of 1'1 the changing shape of

velocity profile along the axis is generally similar

to that of Newtonian fluids. As the value of n

decreases the centerline velocity also decreases,

which implies that the velocity profile is becom­

ing flatter in the central region for lower values of

n. Steep decrease of velocity in the bifurcated

2510

-- : u-vclocity
----- : v-ivelocity

EEP .-[2-2]

0.0
o 15 20

z/Do

Fig, 14 Effect of the bifurcated angle on the pressure
along the axis for a Newtonian fluid
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Fig. 16 Effect of the power-law index on the center­
line velocity for the bifurcation angle of 30°

2.0 r--~---

30

8=30'
8 =60'
8 =90'

15 20
z/Do

105

2.0

1.5

::2 1.0

"
0.5

0.0
0

Fig, 18 Effect of the bifurcation angle on the center­
line velocity for a non-Newtonian fluid of n
=0.80

3020

---: n = 1.00
- - - - : n = 0.80
- . -: n = 0.53

,
15

z/Do
105

15

o.s

0.0
o

~ 10

Fig. 17 Effect of the power-law index on the pressure
variation for the bifurcation angle of 30°
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Fig. 19 Effect of the bifurcation angle on the pressure
along the axis for a non-Newtonian fluid of n
=0.80
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2.0

0.0

o
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region is more pronounced for the high value of

n. Far downstream in the daughter branch. the

velocity profile resumes its fully developed value

just as in the main tube for the given value of n.

Pressure variations in the upstream and down­

stream sides for the given value of Il is just the

same as the fully developed values. Dimensionless

pressure drop for different index n is not identical

either in the upstream or downstream side of the

flow. The power-law index n of a non-Newtonian

tluid plays a significant role on the pressure drop

along the axis.

Effects of the bifurcated angle on the centerline

velocity and pressure for the value of 11 =0.80 are

shown in Figs. 18 and 19. respectively. Due to the

nature of non-Newtonian fluids, the maximum

velocity in the central region decreases when the

value of n decreases. Effects of the bifurcation

angle on the centerline velocity and pressure

along the axis for the given n value is almost the

same as those for a Newtonian tluid.

6,3 Effect of the diameter ratio
For Reynolds number of 400 and the bifurca­

tion angle of 30°, effects of the diameter ratio on

the centerline velocity and pressure variation of a

Newtonian fluid are shown in Figs. 20 and 21,

respectively. Diameter ratio is taken to be 1.0, O.

8, and 0.6 for comparative study. As the diameter

ratio decreases the velocity In the branch

increases and also, the pressure drop increases.

For the diameter ratio of 0.6 the velocity in the

daughter branch is larger than that of main tube

due to restriction of the flow area. Abrupt change

of velocity in the bifurcated region is seen in the
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20.0

7. Conclusions

the centerline velocity and pressure along the axis

of a non-Newtonian fluid of n =0.80 are shown

in Figs. 22 and 23, respectively. Effects of diame­

ter ratio on the velocity and pressure are very

much analogous to those on Newtonian fluids.

Due to the difference of the apparent viscosity of

non-Newtonian fluids the magnitude of the

centerline velocity and the pressure drop are

different depending upon the power-law index n.302520
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Fig. 20.

For Reynolds number of 400 and the bifurca­

tion angle of 30°, effects of the diameter ratio on

-~--

CD Among fluids studied, the rheological prop­

erties of aqueous Carbopol solution are similar to

those of blood and the Carbolpol solution

behaves quite similarly to the blood flow in the

stenotic section.

@ Blood and Carbopol solution show higher

pressure drop along the axis and shorter reatta­

chment length than those of water and sugar

solution in the stenotic circular tube for the same

Reynolds number.

® Blood and Carbopol solution exhibit quite

different pressure drop across the stenosis depen­

ding upon Reynolds numbers in the stenotic

circular tube; Pressure drop along the axis of

blood is higher than that of Carbopol solution at

Re = 50, but the pressure drop of blood is lower

than that of Carbopol solution at Re =400.
@) Centerline velocity variation of blood in the

stenotic section with sudden contraction-sudden

3025
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expansion is larger than that in the stenotic sec­

tion with gradual contraction-gradual expansion.

(5) Both the dimensionless maximum velocity

and the pressure loss decrease as the Reynolds

number increases for blood flows in the stenotic
section.

@ The centerline velocity for each bifurcation

angle of 30°, 60° and 90° shows almost the same

tendency for either Newtonian or non-Newtonian

fluids. For the same bifurcation angle the pressure

drop of a non-Newtonian fluid is smaller than

that of a Newtonian fluid.

(]) As the diameter ratio decreases, the center­

line velocity in the daughter branch increases.

The diameter effect on the centerline velocity and

on the pressure loss of a power-law fluid along

the axis is simi liar to that of a Newtonian fluid.
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